Tag: electric vehicles

EV revolution could stall due to mineral shortages

EV revolution could stall due to mineral shortages

An article from Petroleum Economist  (italics are Matau Advisory’s emphasis) is below.

 

Note that the article’s assumptions are that by 2050, 100% of cars in UK will be electric.  My limited imagination suggests that is a big ask.  Thus the required increase in demand for critical commodities will appear dramatic.

Note also that BHP and BP assume that EVs may achieve 40% of market share by 2040. 

Matau’s thinking is that with the time constraints on discovery, evaluation, permitting, construction and commissioning of new projects being approximately 6-10 years (with the average skewed to the longer term), that supply of the critical commodities, (lithium, cobalt, graphite, nickel, copper, manganese) to battery factories at the very high forecast growth rates (+20% p.a. for ~ 10 years from 2020) will seriously constrain growth rates, to likely less than 10% p.a., based on current new mine production growth rates, and even that supply growth rate will be a challenge.  i.e. that the EV uptake will be limited by supply of critical materials. 

It is not so much the political stability of the jurisdiction, rather the process from discovery to delivery (anywhere in the world).

That commodity supply thematic also applies if enthusiasts want to displace Li-ion batteries with a different battery construction that may include say vanadium, zinc-air, et al. 

There may be scope for new technology to improve recoveries of some of the key elements from existing operations, though these technologies have yet to be identified and or applied. 

This article refers to the logistics for delivery of power supply for EV’s to the UK.  Many other countries have lower population densities, spread over larger areas, which suggests to Matau that the greatest uptakes are likely to be within major cities.  Also many large cities have created their own (polluted / photo-chemical smog) microclimates that a high level of EV uptake could alleviate, including examples such as Los Angeles.

Matau applauds the development and adoption of EV’s though considers that careful thought and management of expectations is required.

 

===========================================

EV revolution could stall due to mineral shortages

More planning is required to ensure adequate supply, researchers say

A potential shortage of minerals needed to produce the billions of batteries required to power electric vehicles (EVs) risks slowing down the transition from internal combustion engines (ICEs) to cleaner forms of transport, according to a team of UK-based scientists.

Researchers working on the Security of Supply of Mineral Resources (SOS Minerals) multi-institution research programme, partly funded by the UK government, have crunched the numbers and come up with some daunting-looking headline figures.

They looked at the amount of minerals required to make all cars and vans in the UK electric by 2050—based on the current UK fleet size of some 31.5mn vehicles—and for all new sales to be purely battery electric by 2035.  Both are recommendations contained in a report by the parliamentary Committee on Climate Change (CCC).  In early June, these were being considered for adoption by the UK government, whose current pledge is limited to eliminating ICE sales by 2040.

The team concluded that just to meet these UK targets, assuming the vehicles use next-generation NMC 811 batteries, would require just under two times the world’s total annual cobalt production, nearly all world production of neodymium, three quarters of the world’s lithium production and at least half of the world’s copper production, based on 2018 data.

Just ensuring that EVs meet UK demand for new cars and vans from 2035, would require the UK to import the equivalent of European industry’s entire cobalt consumption, according to a letter sent to the CCC in early June.  It was signed by Richard Herrington, head of the Earth Sciences department at London’s Natural History Museum, and other scientists involved in the SOS Minerals programme.

Scaling that up to a global level would, of course, be an even a greater challenge.  By 2050, some forecasts predict, there will be at least 2bn cars on the world’s roads.  Herrington estimates that if all of those were to be EVs, annual production of neodymium and dysprosium would need to increase by 70% and stay at that level until 2050.  On the same basis, annual copper output would need to more than double and cobalt output would need to increase by at least 3.5 times to meet global demand.

Herrington told Petroleum Economist that increasing minerals production to meet the envisaged increase in the EV fleet—as well as for the additional renewable energy and storage infrastructure required to power the fleet and extract the minerals—would be challenging but not impossible.

“[The ambition] is laudable, and it could be plausible.  but it needs greater thought as to where those materials might come from,” he said.

Many of the rare earths and other minerals used for batteries are mined in politically unstable parts of the world, such as parts of sub-Saharan Africa.  Herrington believes they could be sourced closer to the main EV markets, providing greater security of supply, as well as boosting overall production.  That includes Europe, where, for example, more cobalt could be recovered from copper mines than is currently the case, if new technologies were deployed, he said.

The increase in renewable energy infrastructure needed to provide power for EVs would also consume more metals and minerals.  Wind turbines require a lot of steel, while solar panel installations consume several scarce minerals, such as high purity silicon, indium, tellurium and gallium.  Extracting the minerals themselves is also a power-hungry process, adding to demand.

Then there are the transmission lines needed to connect them to the grid.  Herrington notes that a power station requires fewer copper-based cables than hooking up the hundreds of wind turbines required to produce the same amount of power.

“You could be more aggressive with carbon capture and still continue with hydrocarbons to generate power,” he said.

However, given the faltering progress of efforts to get carbon capture and storage moving in the UK and elsewhere in the world, for now, this technology seems unlikely to be able to play more than a bit part in efforts to allow coal and gas to play a long-term role in the energy sector.

Herrington does not believe the potential minerals supply crunch necessarily means the world will have to use more oil for longer in the transport sector.

“I don’t think we have to.  We just have to make sure that we gear up, so that the alternatives are available in the quantities that we want,” he said.

Source: https://www.petroleum-economist.com/articles/midstream-downstream/power-generation/2019/ev-revolution-could-stall-due-to-mineral-shortages

 

 

Commodity Review 20190418 by Andrew Pedler – Now Available

Commodity Review 20190418 by Andrew Pedler – Now Available

USA – OECD CLI, EVs

Comments of particular interest are noted with ‘*’. 

Matau’s Comments:  

  • OECD Composite Leading Indicators (CLIs) continue to show a generally sluggish ‘developed economy’ world, and growing ‘emerging’ economies.
  • Base metal inventories remain tight, though some prices are just starting to reflect fundamental positions.  Uncertainties generated by geopolitical activities continue to hinder normal trading conditions, though a sense of some certainty or time-frames to outcomes, appears to be calming some of the market nerves.  
  • USA data is showing several aspects of slowing growth.  (Industrial Production, Housing Starts) 
    • Matau notes that in January 2006, the New Housing Starts and Residential Construction Spend data both commenced prolonged downturns culminating in the global financial crisis.  Both these sets of data are worth pondering and are graphed in this issue.  I am not suggesting we are up for a repeat, rather I am amazed that such turning points seemed to attract so little attention over the following two years.

 

SUMMARY  

*Copper  Chile’s Cochilco forecasts Cu prices of USD 3.05/lb for 2019, and USD 3.08/lb for 2020. .

*Cobalt  Basic economics of supply & demand have not changed.

Nickel  Price supported by hopes that China’s stimulus is translating into stronger growth.

*Zinc & Lead  Analysts expect increased Zn mine supply (Zn concentrates) in 2019.  Digital Pb battery map.

Tin  LME needs to review & revise its rules for metals’ warehousing.

Aluminium  China’s Al production reduced in March, potentially related to capacity cuts.

Gold  Venezuela sold USD400m of its gold holdings.

Platinum & Palladium  Zimbabwe to name two new investors in separate new Pt mine ventures.

*Oil Drilling in USA shale districts slowing down.  USA to review its Iran sanctions in May

Coal  LVPCI price contracts for the Mar19Qtr finally settled by majors.

Iron Ore  Prices down as Brazil’s Bucutu set to reopen.  Aust. exports post cyclones expected to increase.

Shipping  Freight rates rose across major Asian routes this week.

General 

*Electric vehicles:  Can global mine-supply meet the manufacturers’ high growth forecasts?

**OECD Composite Leading Indicators:  .

*USA – Construction Spend:  Private & Residential spend was down.  Public and NonRes was up.  Note the downturns in Residential in Jan 2006.

USA- Durable Goods, Vehicles, & Electronics:  Durables OK, Vehicles strong, Electrics OK.

USA Industrial Production & Capacity Utilisation:  USA appears to be slowing down.

*USA – New Housing Starts:  Total House Starts down.  Note also the downturns in Housig Starts in Jan 2006.

Zinc pinch-point graph

A ‘pinch-point‘ is the level of inventories of a commodity or product below which consumers of that commodity or product become concerned about security of supply.  When inventories are below the pinch-point, small changes in the balance of supply and demand can cause large changes in the price of the commodity or product.
Inventories are best expressed as a ratio of a period of consumption, say as days, weeks or months of consumption, rather simplistically as tonnes.  That ratio then puts the absolute size of inventory into context with market demand.
Each commodity market becomes ‘tight’ at its own (low) level of inventory. The position of the pinch point curve may shift according to the economics of each cycle, that influence at what level a market is considered ‘tight’.

Teck (20180226) presented data for two recent cycles of tightening zinc markets illustrating that each cycle may travel a different path, but perform a similar pinch-point shape.

Several major zinc mines closed in the last 4-5 years, as their Reserves were exhausted.  To date we have not seen sufficient potential new mine supply to indicate that the closed supply volumes will be replaced in the near term.  There are also no known ‘major’ new deposits able to come on line within the next 6-10 years, the minimum time it takes to discover and develop a new major mine now.  Industry analysts also consider that the sum of all the potential new ‘small’ deposits is insufficient to replace the recent major closures. The outlook for zinc is one of tight supply.

Additionally, for those that believe that the advent of electric vehicle (EV) uptake will mean a near term demise of demand for lead-acid batteries will result in significantly lower prices for lead, the fact that lead is often a co-product or by product of zinc production might reduce the economics of some Zn-Pb mines. This means that confidence in the economics of a zinc mine could be best assured if it is (a) Zn only, or (b) Zn-Cu, rather than Zn-Pb and is reliant on Pb for economic development.  This could mean a shift to a preference for targeting either ‘sedex’ (sedimentary hosted) or VMS (volcanogenic massive sulphide) deposits.

However the range of forecasts for uptake of EVs ranges widely, with some more conservative participants (BHP, Wood Mackenzie et al) forecasting continued growth in Pb-Acid battery demand, albeit slower, to 2030 or 2040, with EVs achieving a 40% share of the global light-vehicle market in those time frames.   Forecasting high growth rates is always difficult, particularly matching high growth forecasts of supply and demand.  We expect the ramp up phase(s) will have volatile pricing.